Словарь нанотехнологий
Искусственный фотосинтез

В начало словаря

По первой букве
A-Z А Б В Г Д Ж З И К Л М Н О П Р С Т У Ф Х Ц Ш Э Я

Искусственный фотосинтез

Термин

искусственный фотосинтез

Термин на английском

artificial photosynthesis

Связанные термины

биомиметика, биомиметические наноматериалы, наноэлектроника, супрамолекулярная фотохимия, супрамолекулярная химия, хлорофилл

Определение

Процесс конверсии световой энергии в химическую с использованием синтетических супрамолекулярных наноразмерных систем.

Описание

Для устойчивого развития человечеству к 2050 году необходимо производить 10 ТВт «чистой» энергии, не связанной с выделением парниковых газов. Самый перспективный способ получения «чистой энергии» - использование солнечного излучения. Существует три основных способа применения наноструктур для конверсии солнечной энергии [1]: 1) искусственный фотосинтез с использованием  донорно-акцепторных супрамолекулярных ансамблей и кластеров; 2) фотокаталитическое производство водорода; 3) солнечные батареи на основе наноструктурных полупроводников.

Искусственная фотосистема для превращения световой энергии в химическую должна, как и природная, содержать три основных компонента - фотоантенну, реакционный центр и систему хранения энергии [2]. В природных фотосистемах параметры этих компонентов - пространственные, электронные, кинетические и термодинамические - оптимизированы для достижения максимального квантового выхода. В искусственных фотосистемах, кроме высокого квантового выхода, надо достичь как можно большей доли конверсии световой энергии в химическую. При дизайне каждого из этих компонентов решают два главных вопроса: 1) из каких веществ - хромофоров, доноров, акцепторов - они должны состоять; 2) как собрать эти вещества в единую работающую систему? Фактически, необходимо выбрать «строительные блоки» и придумать способ их соединения между собой.

Проще всего эта задача решается для искусственных фотоантенн. В качестве хромофоров выбирают металлопорфирины - тетрапиррольные комплексы металлов, а также их производные. Наиболее популярны порфирины с ионами цинка, магния и платиновых металлов, а также свободные порфирины, в которых центральный атом металла отсутствует. Порфирины соединяют в единую фотоантенну методами супрамолекулярной химии, то есть посредством нековалентных взаимодействий, либо с помощью ковалентных связей (рис. 1). Варьируя пространственную структуру антенны и состав боковых цепей порфиринов, можно управлять потоком энергии по антенне. 

Современное состояние проблемы искусственного фотосинтеза таково, что принципиально решен вопрос синтеза отдельных узлов фотосистемы (фотоантенны, реакционного центра и системы хранения энергии) и их соединения друг с другом. Задача теперь состоит в том, чтобы улучшать характеристики этих систем, сохранив их основное преимущество перед природными - простоту организации.

Прогресс в области дизайна искусственных фотосистем оказывает взаимное влияние на работы в области молекулярной оптоэлектроники [3].

Авторы

Ссылки

  1. Kamat Prashant V. Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy //J. Phys. Chem. C. - v. 111, 2007 - p. 2834-2860.
  2. Gust D., Moore T. A., Moore A. L. Mimicking Photosynthetic Solar Energy Transduction // Acc. Chem. Res. - 2001. v. 34 - p. 40-48.
  3. Martin N., Sanchez L., Herranz M.A. , Illescas B., Guldi D.M. Electronic Communication in Tetrathiafulvalene (TTF)/C60 Systems: Toward Molecular Solar Energy Conversion Materials?// Acc. Chem. Res. - 2007, v. 40 - P. 1015-1024.

Иллюстрации

Супрамолекулярная гексада, моделирующая реакцио

Супрамолекулярная гексада, моделирующая реакционный центр, соединенный с фотоантенной. 

Источник: Gust D., Moore T. A., Moore A. L. Mimicking Photosynthetic Solar Energy Transduction // Acc. Chem. Res. - 2001. v. 34 - p. 40-48.

Разделы

Элементы солнечной энергетики

В начало словаря
Главная