Энциклопедия "Авиация" (1998)
Автоматизация проектирования

В начало энциклопедии

По первой букве
А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

Автоматизация проектирования

Структура программы формирования облика самолёта:G0 — взлётная масса;S — площадь крыла;P — тяга двигателей;χ — стреловидность крыла;λ — удлинение крыла; — относительная толщина профиля крыла;М — число Маха;Nпасс — число пассажиров;Mр — расчётный изгибающий момент для плит аэродромного покрытия;Dф — диаметр фюзеляжа;lф — длина фюзеляжа;nгл. ст — число главных стоек шасси;dпн — диаметр пневматика колеса;H — высота полёта;cе — удельный расход топлива;Dмг — диаметр мотогондолы;cy, cx — соответственно аэродинамические коэффициенты подъёмной силы и сопротивления;mz — коэффициент аэродинамического момента относительно оси z;ГО — горизонтальное оперение;α — угол атаки;cymax — максимальное значение коэффициента подъёмной силы;cyα — производная коэффициента подъёмной силы по углу атаки крыла;F — относительная координата фокуса крыла;qаэр — распределённая аэродинамическая нагрузка;qт — распределённая массовая нагрузка от топлива;qк — распределённая инерционная нагрузка крыла;Gдв — масса двигателя;Gкр — масса крыла;Gоп — масса оперения;Gф — масса фюзеляжа;Aго — относительный статический момент горизонтального оперения;T — относительная координата центра масс;Δтэ — относительный эксплуатационный диапазон изменения центровок самолёта; — производная коэффициента продольного аэродинамического момента по коэффициенту подъёмной силы;Sго, Sво — площади соответственно горизонтального и вертикального оперений;lсб — длина сбалансированной взлётной дистанции;Θ — угол набора высоты;V — скорость;LВПП — длина взлётно-посадочной полосы;lпрерв — дистанция прерванного взлёта;lпрод — длина продолженного взлёта;Vкр — критическая скорость принятия решения о взлете;EPN — уровень шума в децибелах;ЗВИ — звукоизоляция;m — степень двухконтурности двигателя;tп — время полёта;Gанз — масса аэронавигационного запаса топлива;Gт — масса топлива;L, Lп — дальность полёта;tож — время ожидания посадки;СΣ — серийная стоимость самолёта;а — себестоимоTсть авиаперевозок (а1, а2 — значения себестоимости перевозок);Gкн — масса Tкоммерческой нагрузки.

Рис. 1. Структура программы формирования облика самолёта.

автоматиза́ция проекти́рования летательного аппарата — процесс проектирования летательного аппарата с использованием вычислительной техники. А. п. основывается на теории и методах авиационной науки, методах анализа сложных технических систем. А. п. использует построение единой математической модели летательного аппарата, определяющей функцией, связи между его параметрами и характеристиками. В системе автоматизированного проектирования математическая модель летательного аппарат представляется в виде комплекса программ, каждая из которых осуществляет решение определенных уравнений. Уравнения описывают внешние аэродинамические силы, внутренние усилия в конструкции, характеристики двигательной установки и др. При этом учитываются управляющие воздействия и законы управления при ограничениях на значения и связи параметров, определяемых летно-техническими требованиями, условиями эксплуатации и так называемыми уравнениями существования летательного аппарата (уравнения компоновки). На рис. 1 приведена одна из возможных математических моделей самолёта. Для определения, например, аэродинамических характеристик летательного аппарата могут использоваться аналитические и расчётно-экспериментальные методы, базирующиеся на результатах систематических экспериментальных исследований. Характеристики силовой установки при А. п. могут быть получены на основании данных проспекта существующего или математической модели разрабатываемого двигателя. Одной из составляющих математической модели летательного аппарата является математическое описание его поверхности. На этой основе получаются частные геометрические модели самолёта или его агрегатов, используемые при расчёте аэродинамических характеристик, прочности и т. п., проектировании и изготовлении аэродинамических моделей летательных аппаратов, изготовлении технологической оснастки и т. д. Важным моментом в А. п. является создание языковых и программных средств предварительного, формирования схемы летательного аппарата, с помощью которых конструктор «излагает» электронно-вычислительной машине свой замысел, пользуясь банком возможных технических решений (рис. 2). Содержимое банка пополняется результатами новых исследований в аэродинамике, двигателестроении, материаловедении, приборостроении, технологии и новыми конструкторскими решениями. Предварительное формирование схемы летательного аппарата на базе банка возможных технических решений является средством соединения творческих возможностей человека, предшествующего опыта и научно-технического потенциала отрасли с вычислительными возможностями электронно-вычислительных машин. А. п. не заменяет конструктора, а предоставляет ему новое средство для творчества. При А. п. на различных стадиях развития проекта решают задачи формирования облика летательного аппарата, оптимизации некоторой группы его параметров по частным (например, максимум аэродинамического качества) или общим (например, топливная эффективность) критериям, синтеза конструктивно-силовой схемы при фиксированных обводах и общих параметрах летательного аппарата и др. Использование А. п. является также весьма эффективным при решении задачи определения рациональных технических требований к новому поколению летательных аппаратов. Применение методов А. п. в практике работы КБ позволяет повысить достоверность получаемого результата, используя при этом единую информационную базу, наиболее точные методики расчёта характеристик и автоматические проверки значений параметров и выполнения требований (см., например, Автоматизированная система весового контроля). Увеличение скорости вычислительных и графических работ позволяет повысить производительность труда проектировщиков. Качество проекта улучшается благодаря возможности анализа большего числа вариантов и технических решений по отдельным направлениям.

Л. М. Шкадов.

Пример банка возможных технических решений проекта самолёта (модуль формирования схемы).

Рис. 2. Пример банка возможных технических решений проекта самолёта.

В начало энциклопедии
Главная