Энциклопедия "Авиация" (1998)
Статьи на букву "П" (часть 2, "ПЕР"-"ПОВ")

В начало энциклопедии

По первой букве
А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я
Предыдущая страница Следующая страница

Статьи на букву "П" (часть 2, "ПЕР"-"ПОВ")

Перехватчик

Перехва́тчик — см. Истребитель-перехватчик.

Переход ламинарного течения в турбулентное

Статья большая, находится на отдельной странице.

Переходные режимы работы двигателя

Перехо́дные режи́мы рабо́ты дви́гателя — режимы работы авиационного двигателя, при которых основные параметры (тяга, мощность, частота вращения и т. п.) изменяются во времени, а параметры, характеризующие условия полёта (высота, скорость, температура атмосферного воздуха и т. п.), сохраняются практически неизменными. П. р. р. д. вызываются изменением расхода топлива, положения регулирующих органов элементов двигателя или того и другого одновременно. Среди основных П. р. р. д., сопровождаемых увеличением тяги (мощности), обычно рассматриваются запуск двигателя, приёмистость двигателя, включение системы форсирования и т. п., а среди П. р. р. д., сопровождаемых уменьшением тяги (мощности), — выключение системы форсирования, сброс газа, выключение (выбег) двигателя, включение системы реверсирования. П. р. р. д. характеризуются временем изменения тяги (мощности) от её значения на исходном режиме до 0,95 (1,05 при снижении тяги) значения на конечном режиме, линейностью изменения тяги и другими параметрами.

Периодические издания

Статья большая, находится на отдельной странице.

Пермское моторостроительное конструкторское бюро

Пе́рмское моторострои́тельное констру́кторское бюро́ (ПМКБ) — берёт начало от КБ Пермского авиамоторного завода № 19, основанного в 1934. С 1939 самостоятельное предприятие (ОКБ-19, затем ПМКБ). Награждено орденами Ленина (1943) и Октябрьской Революции (1982). О поршневых и газотурбинных авиационных двигателях, разработанных в ПМКБ под руководством А. Д. Швецова и его преемника П. А. Соловьёва, см. в статье АШ.

Пермское производственное объединение "Моторостроитель"

Пе́рмское произво́дственное объедине́ние «Моторострои́тель». Пермский авиамоторный завод № 19 вступил в строй в 1934. До 1939 в него входило КБ А. Д. Швецова. В 1935—1941 завод производил поршневые двигатели М-25А, М-25В, М-62, М-62ИР. В период Великой Отечественной войны выпускал поршневые двигатели АШ-82, АШ-82ФН, а в послевоенные годы — АШ-73ТК. АШ-82Т, АШ-82В. В 1953 начато производство газотурбинных двигателей. Строились турбореактивные двигатели АМ-3 (РД-ЗМ), турбовинтовые двигатели АИ-20, турбовальные двигатели Д-25В, ТВ2-117, турбореактивные двухконтурные двигатели Д-20П, Д-30, а также редукторы для вертолётов Ми-6, Ми-8, Ми-26. В конце 80-х г. начато освоение турбореактивного двухконтурного двигателя ПС-90А для пассажирских самолётов нового поколения. В 1979 на основе завода образовано производственное объединение. Предприятие (объединение) награждено 2 орденами Ленина (1936, 1970), орденами Октябрьской Революции (1984), Красного Знамени (1945).

Персонал авиационный

Персона́л авиацио́нный — работники гражданской авиации, деятельность которых непосредственно связана с её использованием. Подразделяется на лётный состав, обслуживающий персонал на борту воздушного судна, персонал, осуществляющий управление воздушным движением, инженерно-технический персонал по эксплуатации воздушных судов. Работникам П. а. по установленному перечню (пилотам, штурманам и др.) присваивается класс и выдаётся свидетельство. Лица П. а. допускаются к работе на том или ином типе воздушного судна и авиационного оборудования в зависимости от присвоенного им класса и знания нормативных документов, регламентирующих их работу, а также удовлетворяющих специальным требованиям (например, возрастные, медицинские). Особое внимание в национальном законодательстве многих стран уделяется правовым вопросам, касающимся экипажа воздушного судна.

Перфорация стенок

Статья большая, находится на отдельной странице.

Петля

Петля́ — то же, что Нестерова петля.

Петляков Владимир Михайлович

Петляков Владимир Михайлович.

В. М. Петляков

Петляко́в Владимир Михайлович (1891—1942) — советский авиаконструктор. Окончил Московское высшее техническое училище (1922). В 1917—1918 техник-чертежник авиационного расчётно-испытательного бюро при аэродинамической лаборатории Московского высшего технического училища. В 1921—1936 в Центральном аэрогидродинамическом институте (в КБ А. Н. Туполева). Руководил проектированием крыльев многих самолётов АНТ, внедрением в серию бомбардировщиков АНТ-4, АНТ-6, созданием бомбардировщика АНТ-42 (Пе-8) — см. Ту. П. — один из организаторов металлического самолётостроения в СССР, создал (совместно с В. Н. Беляевым) метод расчёта многолонжеронного металлического свободнонесущего крыла с гофрированной обшивкой (известен как «метод Петлякова»). С 1936 главный конструктор. Был необоснованно репрессирован и в 1937—1940 находился в заключении, работая при этом в ЦКБ-29 НКВД над бомбардировщиком ПБ-100 (Пе-2). В 1941 возглавил КБ на заводе № 22 в Казани, где были продолжены работы над модификациями Пе-2. Погиб в авиационной катастрофе. Государственная премия СССР (1941). Награждён 2 орденами Ленина, орденом Красной Звезды. См. статью Пе.

Литература:

Гай Д. И., Профиль крыла, М., 1981.

Петров Борис Николаевич

Петров Борис Николаевич.

Б. Н. Петров

Петро́в Борис Николаевич (1913—1980) — советский учёный в области автоматического управления, академик АН СССР (1960), вице-президент АН СССР (1979), Герой Социалистического Труда (1969), действительный член четырёх иностранных академий наук. После окончания МЭИ (1939) работал в Институте проблем управления АН СССР, с 1944 — одновременно в Московском авиационном институте (с 1948 профессор). Председатель Совета по международному сотрудничеству в области исследования и использования космического пространства при АН СССР «Интеркосмос» (с 1966). Основные труды по теории инвариантности системы автоматического управления, теории нелинейных сервомеханизмов, адаптивных и терминальных систем, систем с переменной структурой, по системе автоматического управления авиационными и космическими аппаратами, по основам построения высокоточных измерительных устройств. Ленинская премия (1966), Государственная премия СССР (1972). Награждён 5 орденами Ленина, орденами Октябрьской Революции, Трудового Красного Знамени, Красной Звезды, медалями, а также иностранными орденами. В 1980 АН СССР учреждена золотая медаль имени Б. Н. Петрова.

Сочинение:

Бортовые терминальные системы управления, М., 1983 (совместно с другими);

Избранные труды, т. 1—2, М., 1983.

Петров Георгий Иванович

Петров Георгий Иванович.

Г. И. Петров

Петро́в Георгий Иванович (1912—1987) — советский учёный в области механики, академик АН СССР (1958; член-корреспондент 1953), Герой Социалистического Труда (1961). Окончил Московский государственный университет (1935), работал в Центральном аэрогидродинамическом институте (1934—1941, 1943—1944), ЛИИ (1942—1943), затем в других научно-исследовательских институтах. С 1965 в Институте космических исследований АН СССР (в 1965—1973 директор, с 1973 заведующий отделом). Основные труды по прикладной газовой динамике и космической аэродинамике. Провёл исследования по сверхзвуковым диффузорам, распространению колебаний в вязкой жидкости, устойчивости вихревых слоев, физическим условиям распада ламинарного течения. Разработал оптические методы визуального изучения воздушных слоев. Государственная премия СССР (1949, 1978). Награждён 4 орденами Ленина, 3 орденами Трудового Красного Знамени, медалями.

Сочинение:

О распространении колебаний в вязкой жидкости и возникновении турбулентности, М., 1938 (Труды ЦАГИ, в. 345).

Петров Иван Фёдорович

Петров Иван Фёдорович.

И. Ф. Петров

Петро́в Иван Фёдорович (р. 1897) — советский военный и научный деятель, генерал-лейтенант авиации (1942), кандидат технических наук (1940). Окончил военную школу морских лётчиков в Самаре (1920), Военно-воздушную академию Рабоче-крестьянской Красной Армии имени профессора Н. Е. Жуковского (1929; ныне Военно-воздушная инженерная академия имени профессора Н. Е. Жуковского). В 1923—1925 морской лётчик-инструктор 1-го класса Севастопольской школы морской авиации. Работал лётчиком-испытателем в научно-исследовательском институте военно-воздушных сил (1929—1940, в 1939—1940 заместитель начальника института); проводил государственные испытания самолётов Н. Н. Поликарпова и А. Н. Туполева, летал на 137 типах самолётов. В 1940—1941 начальник Центрального аэрогидродинамического института. В 1941 заместитель командующего ВВС Рабоче-крестьянской Красной Армии. В 1942—1947 начальник научно-исследовательского института ГВФ, в 1947—1951 начальник ЛИИ, в 1952—1963 ректор Московского физико-технологического института. Награждён 3 орденами Ленина, орденом Октябрьской Революции, 3 орденами Красного Знамени, 2 орденами Отечественной войны 1-й степени, орденом Трудового Красного Знамени, 2 орденами Красной Звезды, медалями.

Сочинение:

Штопор самолёта, М., 1934 (совместно с А. И. Филиным).

"ПИА"

Логотип авиакомпании «ПИА».

Логотип авиакомпании

«ПИА» (PIA, Pakistan International Arlines) — авиакомпания Пакистана. Осуществляет перевозки внутри страны и в страны Западной Европы, Азии, Африки, а также в США, Канаду, Австралию. Основана в 1954. В 1989 перевезла 5,1 млн. пассажиров, пассажирооборот 9,14 млрд. пассажиро-км. Авиационный парк — 41 самолёт.

Пикирование

Пикирование.

Пикирование.

пики́рование [от франц. piquer (une tête) — падать вниз головой] — снижение летательного аппарата по наклонной к горизонту (с углом наклона более 30°) прямолинейной траектории, лежащей в вертикальной плоскости (см. рис.). Ввод в П. выполняется либо без крена, либо двумя поворотами летательного аппарата вокруг продольной оси на 180°, либо разворотом с креном более 90°. Вывод из П. выполняется без крена с перегрузкой, превышающей единицу. П. является одной из фигур пилотажа. Различают пологое (угол наклона траектории до 45°) и крутое (угол более 45°) П.

Пикирующий бомбардировщик

Пики́рующий бомбардиро́вщик — бомбардировщик, который предназначается для поражения целей с пикирования. Сброс бомб с пикирования позволяет повысить точность бомбометания, что необходимо при поражении малоразмерных целей (железнодорожных мостов, переправ, артиллерийских позиций, колонн на марше, пунктов управления и т. д.). Прицеливание и сброс бомб производятся в условиях визуальной видимости цели. Для увеличения времени прицеливания и повышения точности бомбометания необходимо увеличивать время пикирования и уменьшать высоту вывода из пикирования. Для этого устанавливаются воздушные тормоза (решётки, тормозные щитки), которые уменьшают прирост скорости самолёта в процессе пикирования и устраняют выход её за допустимые значения. Вывод из пикирования создаёт значительные перегрузки, поэтому П. б. должен иметь повышенную прочность. Ввод в пикирование, прицеливание, сброс бомб и вывод из пикирования осуществляют специальные автоматические системы.

Бомбометание с пикирования применялось ещё в 1-ю мировую войну. Первым, специально построенным П. б. был Ju-87 (Германия, 1937). Первое массовое применение П. б. — бомбардировка фашистами Барселоны (Испания, 1938). В 1940 в СССР был создан П. б. Пе-2 (см. в статье Пе). Он успешно применялся в период Великой Отечественной войны. Позднее задачи П. б. были возложены на истребители-бомбардировщики (в ВВС США на некоторые виды ударных самолётов).

В. И. Жулев.

Пиккар Огюст

Пикка́р Огюст, Пикар (Piccard) (1884—1962) — швейцарский физик, пилот, конструктор стратостатов и батискафов, доктор наук (1913). Окончил (1910) Политехническое училище в Цюрихе. В 20-х гг. совершал полёты на свободных аэростатах в научных целях (в том числе для проверки гипотезы о постоянстве скорости света). Для исследования космических лучей в верхних слоях атмосферы построил стратостат объёмом 14,13 тыс. м3, на котором в 1931 и 1932 совершил полёты, достигнув высоты 16 370 м. На батискафах собственной конструкции в 1948 и 1953 опускался на глубину до 3160 м (в Тирренском море).

Пилатр де Розье Жан Франсуа

Пилатр де Розье Жан Франсуа.

Ж. Ф. Пилатр де Розье

Пила́тр де Розье́ Жан Франсуа (Pilâtre de Rosier) (1756—1785) — французский воздухоплаватель, физик и химик. 21 ноября 1783 вместе с армейским офицером маркизом Ф. д’Арландом совершил полёт на тепловом аэростате братьев Монгольфье. Это был первый полёт аэростата с людьми. Аэростат продержался в воздухе около 25 мин, пролетев около 9 км. 23 июня 1784 П. де Р. вместе с химиком Пру на «монгольфьере» поднялись на высота около 4000 м. В 1785 П. де Р. предпринял попытку перелететь через Ла-Манш. С этой целью он построил аэростат особой конструкции, которая позволяла регулировать высоту полёта, избавляя от расходования водорода и сброса балласта, неминуемых при полёте на «шарльере». Этот тип аэростата получил название «розьер». 15 июня 1785 П. де Р. со своим помощником Роменом поднялся в воздух, чтобы, используя попутный ветер, перелететь в Англию. В полёте возник пожар. Оба воздухоплавателя погибли, упав в море вместе с горевшими остатками аэростата. Так первый пилот аэростата стал первой жертвой воздухоплавания.

Аэростаты типа «розьер» применяются при спортивных полётах через Атлантический и Тихий океаны.

Пилон

Крыло самолёта с двигателями, подвешенными на пилонах (а), и хвостовая часть фюзеляжа самолёта с двигателями, подвешенными на пилонах (б).

Крыло и хвостовая часть фюзеляжа самолёта с двигателями, подвешенными на пилонах.

пило́н (от греч. pylṓn, буквально — ворота) — несущая обтекаемая конструкция (см. рис.) для установки вынесенных агрегатов летательного аппарата (крыла, двигателя) или крепления внешних грузов (баков, вооружения и т. п.). Наиболее распространённые формы П. — трапеция, параллелограмм или близкие к ним фигуры. Конструкция П. может быть моноблочной, ферменной с несиловой обшивкой или смешанной.

Пилот

Пило́т (франц. pilote, от piloter — вести самолёт) — то же, что лётчик. В нашей стране термин «П.» обычно применяют к лицам, управляющим гражданскими самолётами и вертолётами или воздухоплавательными летательными аппаратами (аэростатами, дирижаблями).

Пилотаж

Пилота́ж (франц. pilotage, от piloter — вести самолёт) — пространственное маневрирование летательного аппарата с целью выполнения фигур в воздухе. По степени сложности П. делят на простой П., сложный пилотаж и высший пилотаж, по числу участвующих в полёте летательных аппаратов — на одиночный и групповой пилотаж. К фигурам простого П. относят вираж, горизонтальную восьмёрку, змейку, боевой разворот, спираль, скольжение, пикирование и горку с углами наклона траектории полёта к горизонту до 45°. П. осуществляется в спортивных целях, для тренировки лётчиков маневрированию в воздушном бою и атакам наземных целей.

Пилотажно-навигационное оборудование

Статья большая, находится на отдельной странице.

Пилотажный стенд

Статья большая, находится на отдельной странице.

Пилотирование

Пилоти́рование летательного аппарата — целенаправленное выдерживание углового положения и параметров траектории полёта летательного аппарата лётчиком для обеспечения решения целевой задачи. В качестве целевой задачи П. может задаваться приведение летательного аппарата в район аэродрома посадки, заход на посадку, дозаправка топливом в воздухе, полёт строем и др. П. летательного аппарата может выполняться в ручном, полуавтоматическом либо автоматическом режимах, а также по командам с земли (см. Ручное управление, Директорное управление. Пилотирование по приборам, Автоматическое управление, Дистанционно-пилотируемый летательный аппарат). П. осуществляется путём приведения текущих значений координат углового и траекторного движений летательного аппарата к их значениям, определяемым целевой задачей.

Информацию о параметрах углового движения летательного аппарата лётчик получает визуально или с помощью гироскопических датчиков и индикаторов углов и угловых скоростей, перегрузок, углов атаки и скольжения; информацию о параметрах траекторного движения и местоположения летательного аппарата — с помощью приборов системы навигации (см. Пилотажно-навигационное оборудование).

Для осуществления П. самолёта используются аэродинамические рули, воздушные щитки и тормоза (см. Органы управления), устройства для непосредственного управления подъёмной и боковой силами, тяга силовой установки и др. На самолёт вертикального взлёта и посадки и воздушно-космических летательных аппаратах дополнительно используются реактивные управляющие системы (см. Газодинамическое управление). На вертолётах в качестве основных средств создания управляющих сил и моментов служат несущий винт и рулевой винт.

Вместо термина «П.» часто употребляют термин «управление».

В. И. Кобзев.

Пилотирование по приборам

Статья большая, находится на отдельной странице.

Пилюгин Николай Алексеевич

Пилюгин Николай Алексеевич.

Н. А. Пилюгин

Пилю́гин Николай Алексеевич (1908—1982) — советский учёный в области автоматики и телемеханики, академик АН СССР (1966; член-корреспондент с 1958), с 1967 член Президиума АН СССР, дважды Герой Социалистического Труда (1956, 1961). Окончил Московское высшее техническое училище (1935), работал в Центральном аэрогидродинамическом институте (1934—1941), руководитель ряда научно-исследовательских организаций, с 1948 главный конструктор, с 1969 заведующий кафедрой Московского института радиотехники, электроники и автоматики (профессор с 1970). Под руководством П. создана теория проектирования прецизионных систем управления летательным аппаратом; разработаны методы анализа и синтеза сложных динамических систем, широко применяющиеся при проектировании систем управления; созданы основы проектирования систем управления с вычислительными машинами и разработаны научные методы и технические комплексы их экспериментальной отработки. Депутат Верховного Совета СССР с 1966. Ленинская премия (1957), Государственная премия СССР (1967). Награждён 5 орденами Ленина, орденом Октябрьской Революции, медалями. Бронзовый бюст в Санкт-Петербурге.

Пионтковский Юлиан Иванович

Пионтковский Юлиан Иванович.

Ю. И. Пионтковский

Пионтко́вский Юлиан Иванович (1896—1940) — советский лётчик-испытатель. В Красной Армии с 1917. Участник Гражданской войны. В 1918 окончил Московскую военную школу лётчиков. Работал лётчиком, лётчиком-инструктором, командир авиаотряда Военно-воздушной академии Рабоче-крестьянской Красной Армии имени профессора Н. Е. Жуковского. С 1927 лётчик-испытатель. Провёл лётные испытания более 50 типов и модификаций самолётов конструкции А. С. Яковлева (от АИР-1 до Як-1). Участвовал в испытаниях тяжёлых штурмовиков ТШ-1 и ТШ-2, двухместного истребителя ДИ-4, пушечного истребителя И-Z, самолётов-парабол типа БИЧ Б. И. Черановского и других; осуществил ряд перелётов на легкомоторных самолётах, в том числе Севастополь — Москва (1927). Летал на самолётах свыше 300 типов и модификаций. Погиб при испытании самолёта Як-1. Награждён орденами Ленина, Красной Звезды.

Пито трубка

Трубка Пито с протоком:1 — набегающий поток;2 — к чувствительному элементу.

Трубка Пито с протоком.

Пито́ тру́бка [по имени изобретателя — французского учёного А. Пито (H. Pitot)] — приёмник полного давления в потоке жидкости (газа), представляющий собой Г-образную трубку, обращённую своим отверстием навстречу потоку. Измерение полного давления с помощью П. т. основано на полном торможении потока. Значение воспринимаемого П. т. давления зависит от угла между направлением потока и осью приёмной части П. т. Степень этой зависимости определяется формой головной (приёмной) части П. т., отношением диаметра приёмного отверстия к внешнему диаметру трубки и в меньшей степени скоростью набегающего потока и другими факторами. Наибольшей чувствительностью к углу скоса потока обладают П. т., имеющие хорошо обтекаемую форму головной части (сферическую, коническую, оживальную); она значительно меньше у П. т. с прямым срезом. Наименьшей чувствительностью к скосу потока обладают П. т. с протоком (см. рис.), которые обеспечивают измерение с погрешностью, не превышающей 1% при угле скоса до 50°. П. т. применяются главным образом при определении потерь энергии в различных каналах. Используются также для измерения скорости полёта летательных аппаратов (см. Приёмник воздушных давлений) или потока газа или жидкости (при этом с помощью других средств одновременно измеряются статическое давление и температура торможения).

Плавучесть самолёта

Плаву́честь самолёта — способность самолёта плавать на воде при заданном весе, имея при этом определенную ватерлинию, называемую грузовой. Положение грузовой ватерлинии определяется из условия равенства гидростатической силы и веса и отсутствия эксцентриситета между ними.

Различают плавучесть гидросамолётов и плавучесть сухопутных самолётов, совершающих аварийную посадку на воду. Плавучесть гидросамолёта обеспечивается водоизмещением его лодки и поплавков. Плавучесть сухопутного самолёта обеспечивается водоизмещением агрегатов, сохраняющих герметичность при аварийной посадке на воду (гермокабина, топливные баки и другие гермоотсеки). Для обеспечения безопасности плавания каждый самолёт должен обладать запасом плавучести (в %), под которым понимают:

плавучесть самолёта,

где Vп — водоизмещение, соответствующее посадочному весу; V — водоизмещение, соответствующее погружению сухопутного самолёта до уровня входных дверей или аварийных люков без опасности заливания водой объёмов, создающих плавучесть; для гидросамолёта V — водоизмещение полного объёма лодки. Обеспечение П. с. — расчётный случай для дальних пассажирских самолётов.

Способность самолёта сохранять плоскость действующей ватерлинии (не опрокидываться) после прекращения действия на него возмущающей силы характеризует его остойчивость. Самолёт остойчив, если метацентрическая высота положительна.

Литература:

Косоуров К. Ф., Гидросамолёты, их мореходность и расчет, Л.—М., 1935;

Жуковский Н. Е., Теоретическая механика, 2 изд., М.—Л., 1952.

В. А. Максимов.

Плазово-шаблонный метод

Статья большая, находится на отдельной странице.

Планёр

Статья большая, находится на отдельной странице.

Планёрный спорт

Статья большая, находится на отдельной странице.

Планирование

Плани́рование — полёт летательного аппарата со снижением по наклонной траектории с углом наклона менее 20° с выключенными или работающими с малой тягой движителями. При установившемся П. (при полёте с постоянной скоростью) силы, действующие на летательный аппарат, находятся в равновесии, при этом тяга движителей всегда меньше сопротивления аэродинамического (см. также Пикирование). Практически все самолёты могут совершать посадку из режима П.

Платная нагрузка

Пла́тная нагру́зка — см. в статье Нагрузка летательного аппарата.

Платонов Константин Константинович

Платонов Константин Константинович.

К. К. Платонов

Плато́нов Константин Константинович (1906—1984) — советский психолог, один из основоположников отечественной авиационной психологии, доктор медицинских (1953) и психологических (1972) наук, профессор (1954), заслуженный деятель науки РСФСР (1967). Окончил Харьковский институт народного образования (1929), Ленинградский государственный институт медицинских знаний (1930). В 1936 возглавил филиал Института авиационной медицины имени академик И. П. Павлова при Качинской авиашколе. Проводил исследования в области психологии лётного обучения, психологического анализа и рационализации методов наземной тренировки, отбора кандидатов для лётного обучения. Участник Великой Отечественной войны. В 1947—1959 проводил исследования психологии лётного труда (создал для этого специальный самолёт-лабораторию), оборудования кабины летательных аппаратов, проблем лётных способностей и структуры личности и др. Награждён орденами Красного Знамени, Отечественной войны 2-й степени, 2 орденами Красной Звезды, медалями.

Плёночное охлаждение

Плёночное охлажде́ние поверхности — способ тепловой защиты, при котором охлаждающее вещество (газообразное или жидкое) вдувается в высокотемпературный поток газа через щель или проницаемый участок поверхности (перфорированный или пористый) и охлаждает не только область вдува охладителя, но и расположенный за ней участок поверхности, у которой создаётся тонкий слой (плёнка) относительно холодного газа (жидкости). В зоне вдува температура защищаемой поверхности приблизительно равна температуре вдуваемого газа; по мере удаления от зоны вдува температура поверхности повышается, приближаясь к температуре равновесной без вдува. Длина защищаемого участка поверхности возрастает с увеличением расхода охлаждающего газа. Обычно используется серия последовательно расположенных зон вдува охлаждающего газа. П. о. вдувом газа применяется для тепловой защиты камер сгорания и сопел воздушно-реактивных двигателей — для этого обычно используется воздух, отбираемый из тракта двигателя перед камерой сгорания. Конвективно-плёночное охлаждение применяется для лопаток турбин авиационных газотурбинных двигателей (см. Охлаждение двигателя).

П. о. вдувом жидкости используется для охлаждения и защиты от эрозии стенок камер сгорания и сопел жидкостных ракетных двигателей при высоких температурах, когда внешнее охлаждение стенок оказывается недостаточным. В качестве охладителя обычно используется горючее, которое подаётся на поверхность через щели или серию отверстий. Жидкость образует на поверхности тонкую плёнку, увлекаемую вследствие трения потоком газа. По мере движения жидкость испаряется, поглощая теплоту. Пары жидкости, поступая в пограничный слой, действуют на него так же, как газ, вдуваемый через пористую поверхность — увеличивают толщину слоя и уменьшают теплоотдачу. При достаточно большом значении Рейнольдса числа Re, определяемом по толщине плёнки, скорости жидкости и её вязкости, на ней образуются волны, и часть жидкости уносится в виде капель, не реализовав теплоту испарения.

Литература:

Основы теплопередачи в авиационной и ракетно-космической технике, под ред. В. К. Кошкина, М., 1975;

Полежаев Ю. В., Юревич Ф. Б., Тепловая зашита, М., 1976.

В. Я. Боровой.

Плечо оперения

Плечо́ опере́ния летательного аппарата — длина проекции на продольную ось летательного аппарата отрезка, соединяющего заданную точку на средней аэродинамической хорде крыла (обычно в диапазоне центровок летательного аппарата) с точкой, лежащей на ¼ средней аэродинамической хорды оперения летательного аппарата. В расчётах часто пользуются относительным П. о. — П. о., выраженным в долях средней аэродинамической хорды или размаха крыла. П. о. — один из основных параметров, определяющих эффективность оперения (см., например, Эффективность органов управления).

Плоскопараллельное течение

Плоскопаралле́льное тече́ние, плоское течение, — течение, в котором частицы газа движутся параллельно некоторой фиксированной плоскости, при этом в соответственных точках всех плоскостей, параллельных данной, газодинамические переменные имеют одинаковые значения. В декартовой системе координат с осью ОZ, направленной перпендикулярно к данной фиксированной плоскости, газодинамические переменные П. т. не зависят от координаты z и удовлетворяют уравнениям с двумя независимыми переменными x и y.

Плот надувной

Шестиместный спасательный надувной плот.

Шестиместный спасательный надувной плот.

плот надувно́й — спасательное средство, предназначенное для поддержания на плаву вне воды и защиты от окружающих неблагоприятных гидрометеоусловий одного или нескольких человек (см. рис.). П. н. имеют одноместное или многоместное исполнение; обычно выполняются из двух (редко одной) надувных камер плавучести, днища и защитного тента. Камеры плавучести, а часто и днище надуваются от автономного источника сжатого газа. П. н. входят в состав аварийно-спасательного оборудования летательного аппарата и, как правило, оснащаются комплектом средств жизнеобеспечения, сигнализации и оказания первой помощи, а также аварийным радиомаяком (или радиостанцией).

Плотников Павел Артемьевич

Плотников Павел Артемьевич.

П. А. Плотников

Пло́тников Павел Артемьевич (р. 1920) — советский лётчик, генерал-майор авиации (1966), заслуженный военный лётчик СССР (1966), дважды Герой Советского Союза (1944, 1945). В Советской Армии с 1938. Окончил 3-ю Новосибирскую военную авиационную школу (1940), Высшую офицерскую лётно-тактическую школу (1945), Военно-воздушную академию (1951; ныне имени Ю. А. Гагарина), Военную академию Генштаба Вооруженных Сил СССР (1960). Участник Великой Отечественной войны. В ходе войны был лётчиком, командиром звена и командиром эскадрильи бомбардировочного авиаполка. Совершил 343 боевых вылета. После войны на командных и штабных должностях в войсках и центральном аппарате МО СССР. Награждён орденом Ленина, 3 орденами Красного Знамени, орденом Александра Невского, 2 орденами Отечественной войны 1-й степени, орденом Красной Звезды, медалями. Бронзовый бюст в Барнауле.

Литература:

П. А. Плотников, в кн.: Боевая слава Алтая, 3 изд., Барнаул, 1978;

Кузнецов И. И., Джога И. М., П. А. Плотников, в их кн.: Золотые Звезды Алтая, Барнаул, 1982.

Площадей правило

Площаде́й пра́вило в аэродинамике: волновое сопротивление тонкого тела при нулевой подъёмной силе в транс- или сверхзвуковом потоке идеального газа определяется распределением S(x) площади поперечного сечения тела вдоль его оси и имеет то же значение, что и сопротивление тела вращения (эквивалентного тела), имеющего аналогичное распределение Sэкв(x) площади поперечного сечения. Волновое сопротивление тонкого тела можно вычислить, применяя импульсов теорему к некоторой (контрольной) поверхности, расположенной на достаточно большом расстоянии от него. На таких расстояниях поле течения, согласно правилу эквивалентности (см. Тонкого тела теория), не зависит от формы поперечного сечения тела, является осесимметричным и соответствует полю течения около эквивалентного тела вращения. Это и приводит в результате к П. п.

П. п. справедливо и для комбинации тонкого тела (фюзеляжа) с тонким крылом малого удлинения. При трансзвуковом обтекании это следует из принципа эквивалентности, который выполняется для конфигурации рассматриваемого типа, и Sэкв равна полной площади её поперечного сечения. При сверхзвуковых скоростях Sэкв вычисляется несколько иначе. Например, в случае осесимметричного фюзеляжа она определяется суммой Sэкв = Sф + Sкр, где Sф — площадь поперечного сечения фюзеляжа, Sкр — площадь проекции на поперечную плоскость сечения крыла плоскостью, составляющей угол Маха (см. Маха конус) с направлением набегающего потока.

Тела вращения, обладающие минимальным волновым сопротивлением при различных условиях имеют достаточно плавные обводы (см. Осесимметричное течение). Тогда из П. п. следует, что волновое сопротивление можно уменьшить путём обеспечения по возможности более гладкого и близкого к оптимальному распределения площадей поперечного сечения. Например, для комбинации «крыло — фюзеляж» с этой целью в месте расположения крыла у фюзеляжа должно быть предусмотрено сужение, компенсирующее увеличение полной площади сечения за счёт крыла.

Экспериментальные данные подтверждают П. п. и оно успешно применяется при разработке компоновок летательных аппаратов для уменьшения их волнового сопротивления.

Литература:

Эшли X., Лэндал М., Аэродинамика крыльев и корпусов летательных аппаратов, пер. с англ., М., 1969.

В. Н. Голубкин.

"Площадка"

«площа́дка» — ограниченный заданным временем участок прямолинейного горизонтального полёта летательного аппарата с постоянной скоростью и данными режимом работы силовой установки и конфигурацией летательного аппарата. Понятие «П». используется в лётно-испытательной практике.

Площадь крыла

Площадь крыла:а — трапециевидной части;б — полная;в — несущая;г — омываемой части.

Площадь крыла.

пло́щадь крыла́ — площадь проекции крыла на его базовую плоскость (см. Системы координат) при нулевом угле атаки (см. рис.). По геометрическому признаку различают площадь трапециевидной части крыла (иногда — треугольной)-без учёта наплывов крыла, полную П. к. — с учётом наплывов по передней и задней его кромкам; несущую П. к. — с учётом подфюзеляжной его части; омываемую часть крыла, находящуюся в потоке (равна полной площади крыла за вычетом его подфюзеляжной части). П. к. (полная и трапециевидная) включает площади закрылков, предкрылков, элеронов, элевонов, тормозных щитков, интерцепторов. К П. к. не относят площадь вертикальных законцовок крыла (см. Шайбы концевые), устанавливаемых для повышения аэродинамического качества самолёта и закрепляемых на концевых нервюрах крыла. По конструктивному признаку П. к. подразделяют на центропланную часть, вписанную, как правило, в обводы фюзеляжа (иногда частично выступает за его обводы) и консольную часть. У некоторых самолётов крыло не имеет центроплана (подфюзеляжной части).

ПМ-1

ПМ-1 (пассажирский с двигателем «Майбах») — один из первых советских пассажирских самолётов (см. в статье Поликарпова самолёты).

По-2

По-2 — см. в статье Поликарпова самолёты.

Поверхности рулевые

Пове́рхности рулевы́е — см. Рули управления.

Поверхностные силы

Пове́рхностные си́лы — силы, приложенные к поверхности элементарного объёма сплошной среды и обусловленные взаимодействием с частицами среды в соседних элементарных объёмах. Поскольку П. с. возникают при непосредственном механическом контакте между взаимодействующими элементами, их иногда называют также контактными силами. П. с. зависят от локальных свойств и характера движения среды.

П. с. характеризуются вектором напряжения pn представляющим собой предел отношения главного вектора П. с. к площади выделенной элементарной площадки dS при стремлении её к нулю. В общем случае вектор pn не совпадает с направлением внешней нормали n к dS, зависит от её ориентации и выражается через векторы px, pypz, определяющие напряжения на площадках, ортогональных соответственно осям x, y, z:

pn = pxcosφx + pycosφy + pzcosφz,

где φx, φy, φz — углы между n и осями x, y и z. Каждый из векторов рx, руpz имеет вид:

pα = ipαx + jpαy + kpαz,

где α — x, y, z — декартовы координаты, ijk — соответствующие единичные орты, и, следовательно, компоненты этих векторов определяют собой напряжённое состояние среды в рассматриваемой точке поля течения (см. Тензор напряжений). При этом величины рxx, pyy, рzz называются нормальными напряжениями, а рxy, рxz, р, pyz, pzx, pzy — касательными напряжениями. В идеальной жидкости касательные напряжения равны нулю, а нормальные напряжения одинаковы по значению и не зависят от ориентации элементарной площадки. Понятие о П. с. является одним из фундаментальных в механике сплошных сред и используется при выводе уравнений, описывающих её движение.

В. А. Башкин.

Поверхность тока

Пове́рхность то́ка — поверхность в поле течения, в каждой точке которой вектор скорости расположен в плоскости, касательной к этой поверхности в этой точке в данный момент времени. П. т. позволяют наглядно представить структуру потока около обтекаемого тела. Поскольку на П. т., согласно определению, выполняется условие непротекания, то при течении идеальной жидкости любую П. т. можно заменить твёрдой поверхностью — так называемый принцип затвердевания. В аэро- и гидродинамике этот принцип используется, например, при построении решений источников и стоков методом для «вырезки» из течений тел сложной конфигурации (например, волнолётов), которые сравнительно просто рассчитываются.

Предыдущая страница Следующая страница
Главная